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We deal with a biophysical description of antitumor antiangiogenic therapies. In particular, by means of
some simple models, we study the possible effects of the delay between the drug consumption by endothelial
cells and their death on the outcome of the therapy. We have found that this time lag implies an increase in the
minimal dose guaranteeing tumor eradication and, if the delay is greater than a meaningful threshold, it may
preclude the total regression. These results might be of interest in better understanding the causes underlying
the contradictory literature on the clinical trials of antiangiogenic therapies.
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I. INTRODUCTION

Solid tumors, in their first phase of growth, are small ag-
gregates of proliferating cells that receive oxygen and nutri-
ents only through diffusion from external blood vessels. In
order to grow beyond 1–2 mm3 �1�, the formation of new
blood vessels inside the tumor mass is required. Poorly nour-
ished tumor cells start producing a series of molecular fac-
tors that stimulate �and also control� the formation of an
internal vascular network �2�. This process, called angiogen-
esis, is sustained by a variety of mechanisms �2�, such as the
cooptation of existing vessels and the formation of new ves-
sels from preexisting ones. As far as tumor-driven control of
the growth is concerned, endogenous antiangiogenic factors
have been both evidenced experimentally �3� and studied
theoretically �4�. It has to be remarked that tumor vasculature
may be not fully adequate to supply nutrients to all tumor
cells, and thus the cells most remote from vessels may un-
dergo necrosis. An excellent recent reference on this intricate
topic is the biophysically oriented review paper �5�.

Coming to therapeutic applications, there is compelling
experimental evidence that inhibiting angiogenesis may in-
duce tumor regression or sometimes cure �4�. Drugs having
such inhibiting properties are called antiangiogenic drugs.
Moreover, targeting tumor vasculature has been regarded as
a means to overcome acquired drug resistance, since
endothelial cells are considerably more genetically stable
than the continuously mutating tumor cells �6�. In fact, anti-
angiogenic therapy provides “a mean to control an excep-
tionally heterogeneous, unconstrained tumor population via a
relatively homogeneous and constrained endothelial popula-
tion” �7�, reducing the tumor capability to resist to the
therapy. Most angiogenesis inhibitors are cytostatic agents
that inhibit the formation of new blood vessels, but some
direct inhibitors may have cytotoxic action, inducing rapid
destruction of existing blood vessels �8�. Their effectiveness
in the control and, in some cases, in the permanent remission
of experimental tumors has been demonstrated �4,7�, and the
potentiality of antiangiogenic therapy in humans is currently
investigated �4,6,9� with conflicting outcomes despite some
encouraging results �4,9�.

Among the factors that influence the clinical effectiveness
of angiogenesis inhibitors, the administration schedule ap-
pears to be particularly relevant �9–11�. Antiangiogenic
therapy has always been proposed as uninterrupted, long-
term treatment, to obtain effective tumor growth control �8�.
Although this concept has pervaded the clinical development
of antiangiogenic drugs, a deeper insight into the relation-
ships between drug pharmacokinetics and antivascular activ-
ity could be useful to improve clinical results.

Biophysical models of the interaction between tumor
growth and the development of its vascular network, as well
as of the action of angiogenesis inhibitors, could help in
planning more effective antiangiogenic therapies. A number
of quite complex mathematical models of the transition from
the avascular to the vascular phase have been published in
recent years �12,13�, and interesting computational ap-
proaches which explicitly model some relevant aspects of
therapies are described in Refs. �12,14�.

A simple mathematical model that emphasizes the con-
cept that tumor growth is a process strictly controlled by the
development of vasculature has been proposed by Hahnfeldt
et al. �7�. Focusing on tumor eradication, its potential for
clinical applications was further exploited �10,11� under regi-
mens of continuous infusion or periodic antiangiogenic
therapy. The model �7� assumes that tumor cells produce two
families of factors exerting a stimulatory and, respectively,
an inhibitory effect on the vascular network. The model pro-
vides a framework to portray the effects of antiangiogenic
therapies, and it was successful in fitting experimental data
of the growth and the response to different antiangiogenic
drugs of Lewis lung carcinomas implanted in mice.

The above model is based on the notion of the carrying
capacity of the vasculature, K�t�, defined as the tumor vol-
ume potentially sustainable by the vessels. The carrying ca-
pacity will be proportional to the extent of effective vascu-
lature. As a consequence, the dynamics of the tumor volume
may be described by the following equation:

V� = VF�V

K
� , �1�

where F��u��0, F�1�=0 and F��u��0 �11�.
To model the regulatory action of stimulatory and inhibi-
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system is in a regime of quasi stationary diffusion, �ii� the
clearance rate of the inhibitory molecules is small, and �iii�
the clearance rate of the stimulatory molecules is very high.
The above assumptions imply that the concentration of the
inhibitory factors inside the tumor is approximately propor-
tional to the square of the tumor radius �i.e., to V2/3�, whereas
the concentration of the stimulatory factors is roughly inde-
pendent of the tumor size. Drugs are assumed to induce loss
of the neo-formed vasculature according to a rate constant
proportional to the drug concentration in blood. Summariz-
ing, the following equation describing the dynamics of K
was proposed �7�:

K� = bV − dV2/3K − �K − �g�t�K , �2�

where g�t��0 denotes the drug concentration in blood, b is a
proportionality parameter for the “stimulatory capacity of tu-
mor upon the inducible vasculature” �7�, d is a proportional-
ity parameter for the “endogenous inhibition of previously
generated vasculature” �7�, � is the spontaneous loss rate
constant of the vasculature, and � is a proportionality factor
for the drug-induced loss rate of vessels. Note that the drugs
examined in Ref. �7� �and in our work� act exclusively on the
vessels, without direct antitumor effects, which implies that
Eq. �1� remains unchanged. Note also that the possible insur-
gence of genetic resistance to the antiangiogenic therapy is
disregarded in Refs. �7,10–14� and will be disregarded here.

The main aim of the present work is to help medical on-
cologists in identifying the basic mechanisms leading to the
success or failure of clinical trials of antiangiogenic thera-
pies. A central problem in the introduction of a new therapy
based on a new drug is the identification of the minimal drug
concentration in blood leading to remission from the disease.
In the framework of the model �7�, we have previously
shown �10� that, in the case of continuous infusion therapy,
this minimal concentration Gcr

o is simply related to the tumor
production of factors stimulating the birth of new vessels:

Gcr
o =

b − �

�
. �3�

Moreover, to explain some experimental findings, we
stressed that the success of antiangiogenic therapies is
strictly related to the clearance rate of the drug: drugs having
excessively high values of this parameter are subjected to
strong constraints on their schedulings; otherwise, they are
ineffective. In this way we tried to explain why, in many
clinical trials, continuous infusion therapy seems to be more
effective than the boli-based therapy �9,15�. In Ref. �11�, we
rooted biologically these theoretical observations by relating
them to some microscopic mechanisms such as intercell in-
hibition between tumor cells and tumor-vasculature coopera-
tion. Another point of interest that we stressed in Refs.
�10,11� is the fact that, in order to achieve tumor eradication,
antiangiogenic drugs with purely cytostatic effect need a re-
markable base-line loss rate of vasculature, which, on the
contrary, seems to be, in some cases, small or zero �7�.

In this paper, we focus on a new potential cause of failure
of antiangiogenic drugs: the noninstantaneous death of en-
dothelial cell �ECs� after drug consumption.

In the framework of chemotherapy, where it is not simple
to assess the relation between drug concentration and cell
death because of the complex pattern of drug effects on tu-
mor cells �16�, the relevance of the delay between drug up-
take into the cell and their death has been discussed and
modeled in Refs. �17,18�. In the framework of antiangio-
genic therapy, where the targets of drugs are complex struc-
tures such as the blood vessels, it is very likely that the time
between the drug uptake by endothelial cells and the loss of
functionalityof vessels may be considerable. Moreover, the
growth of blood vessels seems to be governed by two time
scales of very different magnitude order. In fact, the dynam-
ics of the ECs is by far more rapid than the characteristic
growth times of the tumor, as also suggested by the values
estimated in Ref. �7�, where the characteristic tumor-driven
time of ECs for Lewis’ lung carcinoma in mice is
b−1�4.1 h. Thus, the characteristic time of the dynamics of
drug effects after the consumption by ECs may likely be a
significant fraction of b−1, or even be comparable with b−1.
Note also that in case of boli-based therapies, there is a third
time scale to be taken into the account: the time scale of the
drug concentration profile. For this reason, the delay in the
death of ECs should be investigated by explicitly including it
in the mathematical model.

II. MODELING THE DELAYED ECS DEATH

In order to model the effect of the time lags, we set the
following simplifying assumptions: �i� immediately after the
drug consumption the ECs remains alive, but because of the
impairing of their internal functions, they are no longer un-
der the influence of the pro- and antiangiogenic chemicals
produced by the tumor �we will relax later this assumption�;
�ii� the vessels continue to carry the nutrients up to their
death; �iii� the ECs enter in a state P �=“poisoned” � and
remain there for a time tP, after which they die. The time tP
is a random variable of which we know the probability dis-
tribution ��tP� and, as a consequence, also the cumulative
probability distribution function F�tP�=�0

tP��u�du and the
mean time TP �mean time necessary for the blood vessels to
die after the drug uptake�. We shall model all this by adding
to the model �7� a third compartment of “poisoned” vessels,
and we shall denote by KP�t� the carrying capacity sustained
by the poisoned vessels. As a consequence of the above as-
sumptions, the equation ruling the dynamics of V has to be
changed as follows:

V� = VF� V

K + Kp
� . �4�

The quantity Kp�t� obeys an integral equation obtained by
summing for each past instant 	 the vessels that, due to drug
consumption, entered the P compartment and survived up to
time t:

KP�t� = 	
0

t

S�t − 	��g�	�K�	�d	 , �5�

where S is the survival function. Equations similar to Eq. �5�
arise in many compartmental models with delays—e.g., in
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epidemic theory �19�. The survival function is defined as
follows:

S�
� = Prob
tP � 
� = 1 − Prob
tP � 
� = 1 − F�
� . �6�

It is interesting to note that the function S is such that its
integral is equal to the mean value of tP:

	
0

+�

S�u�du = 	
0

+�

u��u�du = TP.

Note also that the survival of poisoned cells to the spontane-
ous ECs loss �with rate �� is “embedded” in S�
�. Assuming
that the greater probability of death is for small times, fol-
lowed by rapid decay, a good choice to approximate ��tP� is
the exponential distribution. Otherwise, in the case of “bell-
shaped distributions” �e.g., characterized by a well-defined
mean time with a more or less strict range of variance�, a
good choice is the Erlang-Gamma distribution. Finally, the
equation for K remains unchanged.

Under continuous infusion therapy the blood drug con-
centration profile is assumed to be approximately constant:
g�t�=G. At the steady state all state variables will be con-
stant and such that

KP
e = �GKe	

0

+�

S�u�du = �GTPKe, �7�

Ve = Ke + KP
e = �1 + �GTP�Ke, �8�

and imposing K�=0

d�Ve�2/3 = b�1 + �GTP� − � − �G = b − � + ��bTP − 1�G .

�9�

From Eq. �9� it follows that if

TP �
1

b
, �10�

i.e., if the mean killing time is greater than the mean charac-
teristic time of the tumor-stimulated growth of vessels, there
cannot be eradication. Eradication is possible only if
bTP−1�0 and

G � Gcr =
1

�

b − �

1 − bTP
� Gcr

0 , �11�

where Gcr
0 indicates the eradication threshold in the case of

instantaneous death of vessels and Gcr is the minimal erad-
icative drug concentration under continuous infusion therapy
in the presence of delays and absence of sensitivity, in poi-
soned vessels, to tumor-released chemical messengers. For-
mula �11� shows that not only must bTP be less than 1, but
also that bTP has to be significantly smaller than 1. In fact,
for bTP slightly smaller than 1 Gcr is very large: for example,
if bTP=0.5, then Gcr=2Gcr

0 , which might exceed the maxi-
mum tolerated dose for the host organisms.

The biological interpretation of the above relationships is
straightforward: if the death of ECs is slower than the pro-
cess of tumor-stimulated growth of vessels, there cannot be
vessel elimination and, as a consequence, there cannot be

tumor eradication. If the death process is only slightly faster,
then a drug concentration markedly greater than that required
in the base-line case of instantaneous vessel elimination is
needed.

Moreover, if the death process induced by the drug is
slower than the birth process, there is an increase of the
carrying capacity, which is evident from Eq. �9�: if bTP�1,
the dependence of Ve

2/3 on the variable G is linear with posi-
tive slope; i.e., the steady-state tumor volume in the presence
of therapy is greater than in the case of absence of therapy.

We remark here that the above model is minimal, since it
is based on the highly idealized assumption �i�, which we
shall relax in the next section. However, this extreme ideali-
zation allowed us to infer, in a very general case, an inter-
esting and biologically sound result.

III. SENSITIVITY TO THE TUMOR-RELEASED
CHEMICAL MESSENGERS

The phenomenon of an increasing steady-state volume, in
the case of long time lags, depends on the assumption that
the poisoned vessels are not sensitive to the tumor action. If
we suppose that they are sensitive to the release of anti an-
giogenic factors and that they might have a reduced or null
sensitivity to the pro angiogenic factors and if, for the sake
of simplicity, we assume that the distribution of tP is expo-
nential, instead of Eq. �5� we have the following equation:

KP� = �GK + bV − dV2/3KP − �� + q�KP, �12�

where

0 �  � 1

is the reduction factor for the stimulatory capacity of tumor
and q is the loss rate constant of poisoned vessels in the case
of the exponentially distributed “time to death.”

At the steady state, after some simple algebra, it is easy to
see that the equilibria are given by the intersection of the
following two curves:

KP =
V

q
��1 + �b − � − dV2/3� �13�

and

KP =
�b + �G�V

�G + � + q + dV2/3 . �14�

Considering that for G� �1 the second curve gives
KP�V, one finds that �1+�b−��q implies the impossibil-
ity of tumor eradication. Since in this case the average time
to death for the poisoned vessels is TP= ��+q�−1, then

�1 + �bTP � 1 �15�

implies that eradication is impossible: the null equilibrium is
unstable and there is another noneradicative equilibrium
V*� �0,Ve

0�. Note that �i� if =0, we recover the rule
bTP�1; �ii� if � �0,1�, one gets that if
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TP �
b−1

1 + 
� �0.5b−1,b−1� ,

then there is no eradication, so we obtained a stricter con-
straint. Biologically this is due to the fact that if �0, then
there is tumor-stimulated growth of poisoned endothelial
cells.

Setting Z=dV2/3 and solving the resulting second-degree
algebraic equation

TPZ2 + 
�G� − b� + 1� + ��TP + 1�Z + � + G�

��1 − b� + 1�TP� − b��TP + 1� = 0, �16�

condition �15� is recovered and the eradication condition be-
comes

G � Gmin�TP,� =
1

�

b��TP + 1� − �

1 − b� + 1�TP
, �17�

where Gmin�TP ,� is defined as the minimal eradicative drug
concentration under continuous infusion therapy in the pres-
ence of both delays and sensitivity, in poisoned vessels,
tumor-released chemical messengers.

Observe that limTP→0+Gmin�TP ,�=Gcr
0 and that for =0 it

yields

Gmin�TP,0� =
Gcr

0

1 − bTp
. �18�

Moreover, when =0, b�q, and G�Gmin�TP�, rewriting Eq.
�16� in the form

Z = b − � − �G
q

q + � + �G + Z
, �19�

it is easy to notice that its positive solution is such that
Z� �b−�−�G ,b−��; i.e., the equilibrium volume is smaller
than that reached in the absence of therapy, but it is greater
than the volume reachable in the case of an instantaneous
effect of the drug �q=��. If q�b, Eq. �19� indicates that also
for extremely elevated doses, the minimum reachable vol-
ume �in the case of very high G� is Vmin= ��b−�−q� /d�3/2.
Finally, we notice here that if =0, then the non eradication
condition bTP�1 may be recovered also for probability dis-
tributions more general than the exponential one �20�.

IV. LOCAL STABILITY

For the case =0, the local asymptotic stability of the
non-null equilibrium �when it exists� can be studied analyti-
cally. By defining the new variable �=K+Kp, we can study
the equivalent system �V ,� ,Kp�. By means of Mathematica,
we obtained the characteristic polynomial at the equilibrium
point, which yielded the following Routh-Hurwitz condition:

�q + � − b + P2��2 + �P1 + �� +
5

3
z��q + � − b�� + P0 � 0,

�20�

where �=−F��1��0 and P2�0, P1�0, and P0�0 denote
three polynomial positive functions of the parameters of the

system, including G. Clearly, if q+��b �and there exists the
equilibrium point G�Gmin�q��, then inequality �20� is satis-
fied and there is local asymptotic stability. If q+�=b, then
the equilibrium point is, of course, locally stable as well. In
the case q+��b, a careful analysis of P2, P1, and P0 �and of
the properties of Eq. �16�� allowed one to verify that the
Routh-Hurwitz condition holds. This fact and extensive
simulations suggested that the equilibrium should also be
globally stable. Other simulations seem to indicate that,
when there is eradication, it is globally stable as well. We
plan to demonstrate analytically these properties.

V. INFLUENCE OF THE “TIME FROM POISONING”

A more detailed description of the poisoned vessels is
needed in order to stress the influence of the time from the
drug consumption id est, more informally speaking, the time
	 elapsed from the vessel “poisoning” �TFP�. In fact, the
greater the TFP is, the greater is the rate of death and the
smaller is the stimulatory effect of the proangiogenic chemi-
cals produced by the tumor on the poisoned vessels. Thus we
define the function ��t ,	� such that ��t ,	�d	 measures, at
time t, the tumor volume sustainable by the vessels that were
poisoned between 	+d	 and 	 time units before. Further-
more, we assume that �i� the death rate of poisoned vessels
q�	��0 is a non decreasing function of the TFP: q��	��0;
�ii� the sensitivity of the poisoned vessels, �	�� �0,1�, is a
decreasing �or identically null� function of TFP: ��	��0.
Based on the above assumptions, we obtain the following
infinite-dimensional model:

V� = VF� V

K + 	
0

+�

��t,	�d	� , �21�

��

�t
+

��

�	
= �	�bV − �� + q�	��� , �22�

��t,0� = �GK�t� , �23�

whereas the dynamics of K is ruled by Eq. �2�. The equilib-
rium distribution of � is

�e�	� = e−�	−dVe
2/3	−Q�	�

��bVe	
0

	

be�U+dVe
2/3U+Q�U��U�dU + G�Ke�

= �GKer1„	;Ve,Q�·�… + Ver2„	;Ve,�·�,Q�·�… ,

with Q�	�=�0
	q�w�dw. As far as the steady-state tumor vol-

ume Ve is concerned, we must have

Ve = Ke + 	
0

+�

�e�	�d	 = Ke�1 + �GR1„Ve,Q�·�…�

+ bVeR2„Ve,�·�,Q�·�… , �24�

where R1 and R2 are the integrals for 	� �0, +�� of r1 and
r2, respectively, which leads to
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Ke =
1 − bR2„Ve,�·�,Q�·�…

1 + �GR1„Ve,Q�·�…
Ve. �25�

From Eq. �2� it must be

Ke =
bVe

dVe
2/3 + � + �G

. �26�

Thus, it follows that the eradication condition is given by

1 − bR2„0,�·�,Q�·�…
1 + �GR1„0,Q�·�…

�
b

� + �G
,

that is

G � G�
„�·�,Q�·�… =

b�1 + �R2„0,�·�,Q�·�… − ��
1 − b�R1„0,Q�·�… + R2„0,�·�,Q�·�…�

,

�27�

again obtaining an upper limit for b. In particular, for �	�
=0 we have the constraint

R1„0,Q�·�… � b−1. �28�

Finally, it is easy to verify that R1 is decreasing for increas-
ing q�·�, id est:

ql�	� � qh�	� for all 	 � �0, + �� ⇒ R1„0,Qh�·�…

� R1„0,Ql�·�… ,

with evident biological meaning: kill quickly is better.

VI. CYTOSTATIC AND CYTOTOXIC DRUGS

Let us now suppose that the drug has both cytotoxic and
cytostatic effects. In such a case, the equation ruling the dy-
namics of K is as follows:

K� = b
a

a + g�t − w�
V − dV2/3 − �K − �g�t�K , �29�

where the effect of the cytostatic antiangiogenic drug, as in
Refs. �10,11�, is roughly summarized by means of a reduc-
tion of the constant rate b and w is a time lag that models, in
a very simple way, the delay between the drug consumption
and their effect in reducing b. The constant a is the halving
constant, since for G=a the “stimulatory capacity of tumor
upon the inducible vasculature” �7� is halved. In order to find
the minimal eradicating dose under continuous infusion
therapy �CIT�, proceeding as in the previous section, we ob-
tain the equation

�1 + �TPG�b
a

a + G
= � + �G . �30�

Equation �30� has a straightforward geometrical interpreta-
tion: of finding the intersection between an hyperbole and a
straight line. Note that in the absence of delay, the minimal
dose eradicating GCS

o is anyway smaller than Gcr
o , due to the

synergy between the two effects. For TP�0, since
�1+�TPG�b�a / �a+G���b�a / �a+G��, the minimal eradicat-
ing dose GCS is such that GCS�GCS

o . Furthermore, if the

hyperbole �1+�TPG�b�a / �a+G�� is increasing—i.e., if
��a�TP�1—then, GCS�Gcr

o . Biologically this means that
for 0�TP� ��a�−1 the presence of the delay partially com-
pensates for the beneficial effects obtained with the cumula-
tive cytostatic�cytotoxic action; if TP� ��a�−1, eradication
is reached with a drug concentration greater than that needed
for eradication in the absence of cytostatic effects and time
lags.

Note that also in this case the non-null equilibrium point
is locally asymptotically stable. In fact, it is possible to re-
peat the analysis done in Sec. IV, provided that, instead of b,
we use the parameter b*=b�a / �a+G��.

VII. NUMERICAL ANALYSIS

We performed some computer simulations with Math-
ematica in order to assess the behavior of the models under
boli-based therapy. We assumed a monoexponential dynam-
ics for the drugs �7,10,11�:

g�t� =
D

1 − exp�− cT�
exp�− c mod�t,T�� , �31�

where c is the clearance rate constant of the drug, T is the
time interval between two boli �the period of g�t��, and D is
the dose per kilogram. In all simulations we used
F�u�=�ln�u� �7� and the numerical values of the parameters
estimated in Ref. �7�.

In Fig. 1 we show the behavior of V for q�b under vari-
ous increasing values of the dose D. As in the CIT, tumor
eradication is never reached and the asymptotic behavior re-
sults in being a small oscillation around a mean value close
to the minimum value predicted under CIT for G�1. Figure
1 reports simulation results for the drug endostatin, whose
clearance is c=1.7 day−1. In Refs. �10,11�, we stressed that
drugs having high clearance rates need to have mean values
�g�t�� considerably higher than the CIT minimal drug con-
centration Gmin in order to achieved tumor eradication under

0 20 40 60 80 100 120
t

0

2000

4000

6000

8000

10000

12000

V

FIG. 1. Simulations of the time course of the tumor volume
under boli-based therapy with q�b and increasing values of the
dose �from top to bottom, D=20,40,80,160,320,640,
1280 mg/kg�. Simulated drug: endostatin, c=1.7 day−1.
Tumor volume V �mm3�, time t �days�. F�u�=�ln�u�,
�=0.192 day−1, T=2 days, b=5.85 day−1, d=0.00873 day−1 mm−2,
�=0.66 day−1 kg/mg.
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periodic therapy. In our simulations we observed a similar
phenomenon concerning drugs with high clearances �e.g.,
TNP 740, with c=10.1 day−1�: the convergence towards Vmin
is by far slower for drugs having high c. Note anyway that
excessively high values of G are not compatible with toler-
able toxicity in patients.

Being �g�t��=D / �cT�, if there were a “one-to-one” corre-
spondence between CIT and periodic therapy, the eradication
condition would be D�Dmin�q ;c ,T�=cTGmin�q�. In the case
of an instantaneous effect of the drug, we find in Refs.
�10,11� that in reality the minimal eradicating dose is,
roughly speaking, a more than linearly increasing function of
cT. In the numerical simulations we performed, we recov-
ered the same phenomenon. E.g., for q=3b �i.e.,
TP�82 min� and drug angiostatin with c=0.38 day−1, the
correspondence with the CIT would imply an eradication
threshold Dmin

CIT�22.23 mg/kg. Note that in absence of delay
the threshold would have been 7.65 mg/kg.

Figure 2 shows that for angiostatin the value of the effec-
tive threshold under periodic therapy is Dmin

Boli�2Dmin
CIT. More-

over, increasing cT, our simulations indicate that an increas-
ingly higher threshold has to be exceeded in order to achieve
the eradication, exactly as in the case of absence of delays.
For TNP 740, with c=10.1 day−1, for which Dth�q�
=68.2 mg/kg �with no delay: 45mg/kg� our simulations
show a remarkable increase in the effective threshold. Fi-
nally, our simulations did not stress new effects due to inter-
ferences between q and the c.

VIII. FINAL REMARKS

We have developed here a mathematical model for the
tumor-vasculature interaction and the antiangiogenesis
therapy that takes into account a delay between the consump-
tion of a drug by endothelial cells and their death. Our aim
was to assess the possible influence of the noninstantaneous
death of vessels on the outcome of this type of antitumoral
therapies and, as a consequence, on the dosing of the drugs.

In the case of continuous infusion therapy, which was re-
vealed to be the most effective way to administer antiangio-
genic therapies, our models indicate that a mean delay
greater than the mean characteristic time of the tumor-
stimulated growth of vessels impedes the tumor eradication,
which is not attained even in the theoretical case of an infi-
nite concentration of the drug. More in general, our models
showed that the presence of the delay implies that the admin-
istered dose must be larger than in the case of instantaneous
death, in order to achieve remission from the disease. Nu-
merical simulations seem to indicate that for periodical boli-
based schedulings similar results hold. Quite interestingly, all
the eradication conditions �under CIT� given here and in
Refs. �10,11� are independent of the parameters ruling the
dynamics of the tumor volume.

Note that in Ref. �7� and in the present work “a vast array
of spatial… details of tumor cell expression” �7� has been
disregarded, though the ondinary differential equation �ODE�
models of Ref. �7�, which we extended here, were derived
starting from a simple spatial partial differential equation
�PDE� model by applying the assumptions �i�–�iii� of Sec. I.

We would like to stress that this lack of an explicit spatial
description is a strong limitation, since it implies that our
models are more explanatory and qualitative than predictive
and quantitative. On the contrary, it would be important to
deepen our analysis by including in detail spatial effects
�which we hope to do in the near future�. In particular, for a
fair quantitative analysis, the spatial discrepancies between
blood flow and perfusion must be properly taken into ac-
count. In fact, the carrying capacity “is a measure of actual
tumor sustenance and thus ignores that portion of the micro-
circulation that may be dysfunctional for a variety of rea-
sons” �7�. Furthermore, a spatial modeling might allow one
to describe in detail the phenomena of “physical resistance,”
id est of resistance unrelated to genetic instability �the endot-
helial cells being far more stable than the tumor cells�, since
they are due to more subtle phenomena �21�, such as prob-
lems related to the interaction between some drugs and the
surface of target cells. Many of these phenomena have been
pointed out in chemotherapy, and some of them �or others�
might be present in antiangiogenic therapy. However, from a
qualitative point of view, including all these spatial phenom-
ena should not lead to biological results significantly differ-
ent from those illustrated here—i.e., that one of the main
possible causes of failure of the therapeutic experiments in
antiangiogenic therapy might be the delay in the response to
drugs after the drug consumption by the ECs. These findings
might have some relevance in clinical applications. We hope
that our theoretical analysis might trigger experimental and
biostatistical investigations aimed at assessing the vital dy-
namics of endothelial cells after the administration of antian-
giogenic drugs and their influence on the survival of patients.

Finally, we note that we considered here purely antiangio-
genic drugs, because we were interested in stressing the ef-
fect of time delays in EC death. However, it is also of inter-
est in the study �22� of therapies using drugs having both
direct antitumor effects and antiangiogenic effects �or, as in
Ref. �14�, of a combination of chemo therapy and antiangio-
genic therapy�, which would lead to modify Eq. �1� by add-
ing a therapy term as follows:
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FIG. 2. Simulations of the time course of the tumor volume
under boli-based therapy with angiostatin �c=0.38 day−1,
�=0.66 day−1 kg/mg� with q=3b�b and two values of the
dose: D=42 mg/kg�Dmin

Boli �upper curve: no eradication� and
D=43 mg/kg�Dmin

Boli �lower curve: eradication�. Other parameters
values as in Fig. 1. Tumor volume V �mm3�, time t �days�.
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V� = VF�V

K
� − �h�t�V �32�

�with h�t�=g�t� for therapies having double effect� and ap-
propriate modifications to model the resistance to chemo-
therapy. The main results obtained in Ref. �22�, under the
hypothesis that the cytotoxic effect on tumor cells alone is
not effective in eradicating the disease, are the following:

�i� In the absence of delays and of resistance to chemo-
therapy, the presence of the cytotoxic action on tumor cells
reduces the minimal dose required to eradicate the tumor.
This is an obvious consequence of the synergy between the
direct chemotherapeutic effect and the antiangiogenic effect.

�ii� Introducing the delay but not the resistance, one ob-
tains, proceeding as in the previous sections, that the mini-
mal dose for eradication must be increased.

�iii� In the presence of the resistance to chemotherapy, the
subpopulation of tumor cells that are sensitive to the therapy
becomes extinct. Thus the model of Ref. �22� reduces to that
illustrated here, and antiangiogenic therapy may induce tu-
mor remission, of course provided that condition �17� holds.
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